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Canonical deformations of surfaces of equilibrium states in thermodynamic phase space
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Deformations of submanifolds of thermodynamic equilibrium states introduced by continuous contact maps
on a phase-space manifold are considered in terms of the geometrical formulation of thermodynamics. The
notion of a contact Hamiltonian is recalled in order to give some possible physical interpretations of such a
function in terms of statistical quantities describing initial and deformed systems. Using contact flows we
propose a very efficient method for constructing continuous families of thermodynamic systems. A few ex-
amples show the possible advantages of using contact Hamiltonians.

PACS numbd(s): 05.70—a, 05.90:+-m, 95.30.Tg

I. INTRODUCTION modynamic processes in the language of contact transforma-
tions and vector field§10], and the possibility of deforma-

For the last 25 years there has been growing interest in théons of an equilibrium submanifold using contact tools
application of methods of differential geometry in statistical[10,13. Let us also mention that there exist many similarities
physics and thermodynamics. The geometrical treatment i the structure of contact and symplectar Poissoi mani-
represented by two main lines of investigation: one accordfolds which allow one to describe dynamical systems and
ing to the metric and the other according to the contact structhermodynamics in the common language of differential
ture of thermodynamic phase space. The metric structure waggEometry.
phenomenologically introduced by Weinhold] whereas In this paper, we investigate only one of the many sub-
Ruppeiner[2] derived the form of the metric tensor from jects mentioned above, concerning deformations of the set of
fluctuation theory working in an entropy representation ofequilibrium states(the equilibrium submanifold In some
the fundamental relation. Using the metric tensor many ausense the deformations are canonical, i.e., they naturally ap-
thors have been able to calculate the scalar curvature fdrear when the contact structure and contact transformations
some statistical and thermodynamic models, and to investiare assumed to act on thermodynamic phase space. In other
gate two hypotheses that immediately appeared concerningords, we deal with deformations introduced by the contact
the connection between metric and physical quantiess].  flow. We show that, if there are two surfaces of equilibrium
Ruppeiner put forward the idea that curvature is proportionastates for two different systems located in the same thermo-
to the inverse of the free energy of the system whereas Jadynamic phase space, there exists a contact transformation
yszek[5] proposed that the scalar curvature is divergent neathat deforms one into the other. As an initial systémthe
critical points and, due to its connection with the second angense of evolution in thermodynamic phase spawse will
third moments of fluctuation, can measure the stability of thechoose statistical models of noninteracting particles or spins
system. Both hypotheses have been studied for a wide claggd we will deform them into systems with inner interactions
of systems[3,4] including the van der Waals modg$,6],  (Sec. I\). But due to Theorem 1 below the initial and final
quantum gasefs7], and model magnetic systerf). systems can be chosen freely.

In 1973 Herman[9] suggested that the most suitable To prepare for the introduction of Theorem 1 in Sec. Il
structure for classical thermodynamics is that of an oddwhich turns out to be useful in the construction of deforma-
dimensional space endowed with the contact structuréons using contact flow, let us recall some basics of contact
[10,14. In [12] it was shown that both metric and contact geometry. A more comprehensive discussion of contact ge-
structures have their origin in a statistical quantity called theometry can be found if14,15,13.
microscopic entropyS= —In p, wherep is a representative The contact structure is introduced on the odd-
distribution in mechanical phase space for a macrostate geflimensional thermodynamic phase spatby a differential
erated by fixed mean values of an ensemble abservables, one-form®, called the contact form, satisfying the nonde-
F. The contact structure is related then to the mean value dfeneracy condition
a differential (ds9) and the metric structure to the variance
{(ds—(ds))?), where(---) denotes the statistical average.

BOth structures are independent t_)Ut essential_in the formu"%ccording to the Darboux theorem there exists a coordinate
tion of the laws of thermodynamics. Introducing a thermo-S stem &°,x%, ... x",py, ....p,) (contact coordinatgsin

dynamic phase space na_turally endowed with the contackich the contact one-for has the following form:
structure, one obtains a reinterpretation of the set of equilib-
rium states in terms of an integral submanifold of a Pfaff 0 =dx0+p;dx. (1.2
equation for a contact form, a description for quasistatic ther-
On such a contact manifold one can introduce the contact
transformationp: P— P as a map preserving the contact one-
*Email address: jacekj@phys.uni.torun.pl form up to multiplication by a function

O0(dO)"+#0. (1.7
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e*O=\0, (1.3  Note that if x? were absent then the relatic.9) would
reduce to the well-known formula for the Hamiltonian vector

where the asterisk denotes pull-bddi6] of the form andn  field in mechanics.
is a nowhere-vanishing function da It is natural to inves- The scope of this paper is also to give a physical interpre-
tigate the case of one-parameter groups of contact transfotation to contact Hamiltonians that provide deformations as
mations that are generated by vector fields. More preciselyiell as to show possible applications and advantages that
let ¢, :P— P be such a mapg} ® =\,0); by the generator occur while dealing with such contact transformations. With
of this one-parameter group of contact transformations wéhis aim, in Sec. Il we formulate Theorem 1, which is a
mean a vector fielX given by powerful tool for the discussion of the thermodynamic mean-
ing of the contact Hamiltonian. It turns out that in some
d cases such a contact Hamiltonian remains in close connec-
X(P)=g¢ @(P) for eo(p)=p, (1.4 tion with statistical quantities describing both systems. This
t=0 enables us to give an explicit formula for the contact Hamil-
, ! ) tonian when the initial and final systems are given and to
.e., the vector field tangent to the trajectapy(p) at any  yroquce some thermodynamic systems. When the systems

pointpe P. Itis easy to verify that ifo ® =\ then are described in terms of the canonical ensemble, it is pos-
q sible to give the relation between the contact Hamiltonian

L,O=—\0=1,0, 1. and statistical Hamiltonians of both the initial and the final

X dt™t t (.5 systems. In this case, the contact Hamiltonian “measures”

how much the statistical Hamiltonians differ as a conse-
where Ly is the Lie derivative. We call the vector fields quence of, for example, the difference between potentials of

satisfying Eq.(1.5 contact vector fields. particle interactions in both systems.
We once again return to the fact that the odd-dimensional
thermodynamic phase space endowed with the contact struc- |, sUBMANIFOLDS OF EQUILIBRIUM STATES

ture has many features similar to those of an even-

dimensional mechanical phase space. Among them, the ex- The equilibrium states of a thermodynamic system, de-
istence of vector fields that correspond to smooth, scalagcribed in an appropriately chosen phase sggae located
functions is most useful for our purpose. Let us define theon some subspaces & The subspaces, which are called

Reeb vector field by Legendre submanifolds, have dimension equah {4.6,14].
In [14] a theorem is proved that gives the local description of
i,d®=0, such submanifolds. We recall that for any disjoint partition
(1.6) 1UJ of the set of indices{l, ... n} and for a function
i O=1. ®(x’,p,) of n variablesx!, jeJ, p;, iel, then+1 equa-
tions
Then it is easy to check that a vector fiedg given by
9 9P 0
iy d®=—df+&(f)0, Pi== o X=gp X=®Pig (@D
1.7 _ _
ixf@:f, define a Legendre submanifoldl of P. Conversely, every

Legendre submanifold @? is defined in the neighborhood of
every point by such equations for at least one of the 2
possible choices of the subdeWe call® the function gen-
erating the Legendre submanifold
Suppose that we are given a submanifold of equilibrium
states£ and a functionf generating contact vector fiel;
whose integral curve through a poipt £ is ¢i(p). There
Due to Eq.(1.9) this means that this field generates the con-gre two possibilities: either the curyg(p) stays onZ for all
tact transformation. As in mechanidsis called the contact ¢ je., the vector fieldX; is tangent to the submanifold of
Hamiltonian, although it has nothing to do with the notion of equ”ibrium states’, or the curve leaves the Subspa(‘;e“']
energy. f plays only the role of a generating function for the first case, the trajectory goes through equilibrium states
the contact vector field;. of the system and it can sometimes be interpreted as a qua-
Because contact deformations are due to contact flows Wéistatic process which changes the equilibrium stat@si (.
emphasize the role of contact Hamiltonians, which will gen-it can be proved thaX; is tangent to£ if and only if f
erate further Object§ec. I”) For eXampIe, from Eqil?) vanishes Orﬁ, i'e.' ‘Ccffl(o) [10] In the second Ca_se<f
and (1.2 we deduce that the contact fieki generated by introduces a dynamic flow that deforms the submanifold of
the contact Hamiltoniafi has the following form in contact equilibrium states continuously and takes it into another such

whereixf is the contraction of a differential form with the
vector fieldX;, fulfills the relation

Lx,©=£(f)0. (1.8

coordinates: submanifold. This case is of great interest for our paper.
One can also state the inverse problei@], which in this

o |fop Ot @ [ Of oty ot I context means that we look for a functibrwhen two sub-

f Pigp: x0T\ Piox0 ™ ax [ ap;  ap; axt manifolds of equilibrium states, the initial, and the final

(1.9 L4, are given, so that the flow generated Xy transforms
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Ly into £,. The inverse problem in thermodynamics in a

simpler case was investigated[ih7]. Now we want to give
an explicit expression for the contact Hamiltoniain terms

of @) and®;y—the functions that generate the submani-

folds £y and £, respectively.

Ill. THE CONTACT HAMILTONIAN

In this section, we formulate a theorem that connects th

contact Hamiltonian deforming the initial submanifol,
into the final £, with functions® ,y and® ;) generating’,

and L, respectively. We use the notation of Theorem 1
below, i.e.,x’ and p, are the independent variables. We re-

call thatl andJ are disjoint subsets dfUJ={1, ... n} and

x?, p, denote the setsd, j e J} and{p;, i €1}, respectively.
The remaining variables', p;, andx® are functions of the
independent ones. The whole set oh21 variables

(x%x?,x",p,,p;) builds up the thermodynamic phase

spacep.
Following [19], we formulate our main theorem.

JACEK JURKOWSKI

PRE 62
of od L))
0_¢ 9 _ _ _ w770
=t p|3p| =P pl( ap, 0"D|)
_ 0 o _.,0 0
= 1)~ P o)+ X1y~ P(1)F P o)~ X(0)=X(1) ™ X(0)-
(3.9

Both x{;, andx(, depend only onx’,p;), which stay con-

tant during the evolution, and that is why we can integrate
%q. (3.4). The resulting evolution fox?, taking into account
the initial conditionx®(0)=xg,, is

XO(t) = (X(1, = X{o) )t X5 (3.5
In an analogous way we get

pa(t)=(p5"—pit+py, (3.6

X! (1) = (X{1, = X{o)) T+ X{g) - (3.7

Theorem 1Let £, and£; be two Legendre submanifolds The above equations complete the proof because it is obvi-

given by the generating function®(0)(x3,p|) and ® 4
X(x7,p,), respectively. Then

f(x%,p1) =@ 1) (X, py) = P 0)(X, py) (3.1

ous thatx®(1)=x{;), ps(1)=p§”, x'(1)=x(,, and the
evolution generated b); with f of the form(3.1) transforms
the submanifold of equilibrium states of the initial system
into that of the final system.

Once the Hamiltoniarg3.1) is obtained, we can use it to

is the contact Hamiltonian generating the vector field, theconstruct a continuous family of thermodynamic systems

integral curves of which transform the submanifalg for
t=0 into £, for t=1. te[0,1] is the parameter of the in-
tegral curve.

The proof goes as follows. From E@L.9), remembering
thatf depends only onx¢,p,), we get the following evolu-
tion equations for the whole set of variables:

of
X =f—p—,
plapl
D;= of =0 (3.2
pJ (9XJ, pl ) .
of
X=— %=0
p,

We see immediately that; andx’ do not evolve and remain
constant. On the other hand, due to E2}1), we can write

given by generating functions

D (X7, p) =Xx(t) +py X (1), (3.9
where x°(t) and x'(t) are given by Eqs(3.5) and (3.7),
respectively. We would expect that the systems would pos-
sess “intermediate” properties in comparison to the initial
and final systems, but this will be the subject of further in-
vestigation. As an illustration of the considerations above, at
the end of Example 1 in Sec. IV we construct a continuous
family of van der Waals—like systems different from that
obtained in[10].

IV. CONNECTIONS WITH STATISTICAL
THERMODYNAMICS

In this section, we give a physical interpretation of the
contact Hamiltonian that transforms one submanifold of
equilibrium states into another, showing that it can be asso-
ciated with statistical quantities describing the initial and fi-

out parametric equations for the submanifolds in the cas@a| systems. Let us imagine that there is a continuum of

when the generating function® ), and ®;, depend on
(<, py):

p<k>:_(?‘b<k> 9P
J ax?) ' T op,
(3.3
od
o 1 0
X0 =P p'—ap| , k=01,

where the subscriph refers to the systeniy or £,. Let us
turn back to Eq(3.2). The calculation o&° by use of Egs.
(3.3) and(3.1) gives

systems at our disposal which we can pass through during
the transformation from the initigfirst) system to the final
(deformed one.

A. Nonideal gas models

Let us first work in a five-dimensional phase spaee
locally  described by  thermodynamic  variables
(x°x1,x2,p1,p2)=(U,V,S,p,—T), whereU, V, S p, andT
stand for energy, volume, entropy, pressure, and tempera-
ture, respectively. In such coordinates one can calculate from
Eq. (1.9 that the functionf(U,V,S,p,T) generates a vector
field of the form
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A Sl A A . ;
f P(?p TﬂT au " ap oV aT 3 Waals parameters, aridis the Planck constant. Then using

N of  of a+(Taf+af d
Pou™ av)ap EVIERS

( of af) Jd of 9 of o wherem is the mass of the particla, b are the van der
Xf:
Eq. (4.4) we get

o 4D V—Nb aN?
d f(T.ViN)= = NkTIn——— <. 4.7

In order to give some physical meaning to both functibns o ]
and @ let us first choose the function generating the sub-The contact Hamiltoniai.7) produces the vector field
manifold of equilibrium states as

aN?
®(T,V:N)=—KTInZ(T,V:N), (4.2 U=-+v~
wherek is the Boltzmann constant a{T,V;N) is the par- V=0
tition function of the N-particle system(At this point we '
considerN as a parameter, not a variable (T, V) are cho- N
sen to be independent variables, because in such a case we S=NklIn , 4.9
can imagine that the partition function originates from the v
canonical ensemble for a system described by the dynamical 5 5
Hamiltonian (q,p), where @,p) denote all the R dy- . N%Tb N
namical phase-space variables, P V(V=Nb) V2’
1 H(d,p) T-0
Z(T,V,N)—WJQV ex;( — KT dq dp, (43)

The solution of the above set of equations leads, according to
where the integration runs over the dynamical phase spaceheorem 1, to the following thermodynamic relations for the
Qy. ®(T,V;N) is then the Helmholtz thermodynamic po- van der Waals gas:

tential.
Using Theorem 1, we can give a statistical interpretation B _ aN? _ 3 aN?
to the contact Hamiltonian. Indeed, 1&t,(T,V;N) and Up=U(1)=Uo~ v, ENle_ A
Z4(T,V;N) be two partition functions of the initial and final
systems, respectively; then from E8.1) we get Vi=V(1)=V,,
f(T,ViN)=P)(T,V;N) =P ()(T,V;N) V,—
= = —+
- Z,(TV:N) wa S;=S(1)=S,+NKlIn A
=—kTIho——. .
Zo(T,V,N) (Vl_Nb)N 2m7TkT1 3N/2
3
=3 Nk+kin ' h2 ,
The contact Hamiltonian turns out to be in a simple relation N!

with the ratio of partition functions of the final and initial ) 5 5
systems. When we want to change the initial or the final N°kT;b N7 NkT; N<a

system we must simply reparametrize curves generated by P1=P(L)=pot V41(V1—Nb) a V_f V- Nb V_l
X¢. Let us stress that we want the partition function or ther-

modynamics potentials to play a crucial role in the theory T,=T(1)=T,,
and their origin is less important. Let us give a few ex-
amples. where the initial valuesWy,Vq,Sg,Po,— To) fulfill the rela-
tions
Example 1: Deformation of an ideal gas into the van der Waals
model Uo=3NkT,,

In this example, we calculate the functibthat generates
the deformation of an ideal gas into the van der Waals gas
and show how the contact field transforms thermodynamic
variables and relations. We use the appropriate partition

functions[20] PoVo=NKkTo,

VN [ 2mark T\ 3N2
ZO(T,V;N)ZW T ,

So=3Nk+kIn , 4.9

NI\ h?

Vo <2m7-rkT0)3N’2

valid for the ideal gas. Let us stress, in particular, that the
equation forp, reproduces the standard van der Waals equa-
tion of state,

(4.9

2

Z4(T,V:N)= aN
1

(4.9

(V—Nb)N [ 2mzkT)\3N?2 aN?
NI h2 XA VKT
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In what follows, we will omit the subscript 1, keeping in 1 1
mind that all thermodynamic quantities for the final system  Qn(T,V)= _Nf expl — =2 V(lgi—ay)
VT JUNcgaN KT =k
are evaluated at=1.
Using the flow of the contact fiel.8), we are able to xdqy---day., (4.13
transform not only thermodynamic variables but also rela-
tions including them. For example, it is easy to map thewhich contains all information about the interaction. Due to

specific heat Eqg. (4.4) the contact Hamiltonian that transforms the Leg-
endre submanifold of an ideal gas into the equilibrium sub-
aS manifold of a gas with interacting particles takes the form
cy=T 1) (4.10
v Z(T,V;N)
f(T,V; N) =—kT |nm =—kTlIn QN(T,V).
Indeed, Eq(4.10 differentiated int leads to o(T.ViN) 4.14

. d V—Nb What remains is to determir@y(T,V). To this end, let us
Cy=T|—=| =T|—=Nkin =0, (411 . : i
atl, aT Vo, assume that particles behave like hard balls and the interac-
tion potential has a cutoff at the distandeMoreover, we
and we conclude that, remains constant during the evolu- take into account rare gases so that the probability of a si-

tion. The value o, is then the same as for the ideal gas andmultaneous collision of three or more particles is negligible.

3 These assumptions imply that the configuration integral is
equalss NKk. o1
According to Eq.(3.8) we get a continuous family of van [21]
der Waals-like systems described by the partition functions N a(T)
T,V)= 1+(r—1)——|, 4.1
Zt(T.ViN) V=11 ( S ) @19
_ UNETOV-ND)N' (2makT|\3V2  atN?) where
- N! h2 R xTv) |
T = 4 2 7V(q)/kT_1 da. 4.1
which lead to the equations of state am Jo ma(e da (4.19
taN? Because of Eq4.14) the contact Hamiltonian turns out to be
U=2NKT- ,
\ N
a(T)
f(T,V;N)=—kT>, In|1+(r—1)——|. (4.19
N2at Nb r=1 v
If (N/V)a(T)<<1 for the whole temperature interval is as-
, . . sumed, then
The first one represents the slightly modified energy of the
van der Waals model while the second introduces corrections a(T) N
to the van der WaalpV T equation. f(T,V;N)=— kTT E (r—=1)
r=1
Example 2: Deformation into a nonideal gas a(T) N—1
This example concerns the contact flow that introduces a - v 2
deformation of an equilibrium submanifold of the ideal gas )
into an appropriate submanifold of the gashinteracting - a(T) N
particles. = vV 2
Let us assume that a mechanical Hamiltonian describing
the system, The functionf(T,V;N) generates the following vector field
[see Eq(4.1)]:
N p2
Hy=2>, =—+ >, V(lgi—q), 4.1 . KT2N?
N=2 ot 2 Viai—al) (4.12 . ),
2V
contains a two-particle potentidl dependent only on dis- V=0

tances between particles. It is easy to show by calculating the
partition function(4.3) with the Hamiltonian(4.12 that KN? KN?

. N
Z(T,V;N)=Zo(T,V;N)Qu(T,V), S=oylaM+Ta (M= 5y gl Taml,

KTN?

where Zy(T,V;N) is the canonical partition functiofd.5 p=— " a(T),

andQy(T,V) is a configuration integral,
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T=0. As in Eq. (4.8 we get the contact field and thermodynamic
relations for the van der Waals gas,

Because of Eq(4.9 we get the set of thermodynamic rela-

tions for the final system, U= — 2, U=up— UE,
TZNZ 0
U=3NKT+ >V a'(T), 9=0, v=vy,
VN (2makT\ V2] kN? d - v—b o vo—b
_3 = =
S=35Nk+kIn W(T) +Wﬁ[Ta(T)], S n v’ S=$So n vo

kTb a kTob a

NKT KkTN? NKT o _a _ _Z
: P=vw-b) v P p0+(vo(vo—b) v3

p=T‘Wa<T>=T(1‘Wa(T>

where we omit the subscript 1. Let us stress that the equation T=0, T=T,,
for p has the well-known form of a virial expansion,
where g,v9,S0,Pg,To) represent the initial conditions of

p N 1 the dynamics. Again we conclude that the thermodynamic
KT V 1- 2\v a(m)|. relations for the van der Waals gas are reproduced.
Similarly to Eq.(4.11), we are able to calculate the relation B. Spin systems
for ¢y for the final system, Any other choice of independent variablesZirconsistent
. 2 2 with Theorem 1 can be made; in particular, magnetic sys-
. S kN- d ; ; ;
T 2 2 2 tems can be taken into account. As an illustration we recall
Cy=T z[Ta(T)], : : : :
aT), 2V dT two magnetic systems, the one-dimensional Ising model and

the Curie-Weiss model, for which partition functions are
which gives, after integration, the formula known[22,23. The appropriate thermodynamic phase space
is similar to that previously used, where one changes the
contact variablep— —H (magnetic field intensify and v
—m (magnetizatioh i.e., we assume a contact vector field

2 d2
=3 -
CV—ZNk+ 2V Td—Tz[Ta(T)],

of the form
where 2Nk originates from the initial condition and corre-
sponds to the value af, for an ideal gas. :(f—H of Ta_f) g ot 9 9t 9
The same considerations as in Example 1 can be applied f dH dT)ou JH am JT ds

when we choose as variables the thermodynamic densities

u=U/N, v=V/N, ands=S/N, i.e., we parametrize thermo- +(Hﬂ— ﬁ)iJr( ‘9_f+‘9_f)i_ (4.19
dynamic phase space bw,p,s,p,—T). When we select du  dmjoH Ju  ds)dT

(v,T) as independent variables and consider the free energX ) ) ) )
per particleg(v,T) as a generating function, it is immedi- ~S & generatlng function we use the Gibbs thermodynamic
ately clear that such a model is suitable to describe statistic@otential per spin,

systems in the thermodynamic limM—c while v=V/N

remains constant. Suppose that the systemZif®sT;N) as f(H,T)=—KT lim Em Z(H,T:N), (4.20
a partition function. Then NN
1 which implies according to Theorem 1 that the contact
¢(U,T)= —KkT lim N"’l Z(V,T;N). (4.18) Hamiltonian is

N— oo
Theorem 1 implies that the contact Hamiltonian deforming f(H.T)=Tq)(H.T) =) (H.T), (4.23

the initial submanifold into the final one has the form where the contact flow deforms the initial submanifold of the

system of noninteracting spiriput interacting with the ex-
ternal magnetic fieldinto a system of spins where interac-
tions are present.

f(U,T):(D(l)(U,T)_ ¢0(U,T).

Example 3: van der Waals model in the thermodynamic limit

Using Egs.(4.5) and (4.6) for the calculation of the free Example 4: Short interaction model
energy(4.18 in the thermodynamic limit we obtain the fol- | et us consider first the case of a one-dimensional cyclic
lowing contact Hamiltonian: spin chain in a magnetic field of intensit}, where each spin
interacts with its nearest neighbofthe Ising model We
f(v T)=—kTInB—E denote byJ the parameter of interaction and assume the
' v Gibbs potential in the following fornh22]:
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e kT H T cosiH/kT)[2e 2T sinh(2J/kT) — 1]
f(H.T)=- N\ €SN T XD = = T cosR(RIKT) =26 2T sink 237K T) 72"
+ \JCosR(HIKT) — 26 2 T sinh(2J/kT) which is in agreement with relations one gets using statistical
methods.
which simplifies for noninteracting spins to Example 5: Long interaction model
fio)(H,T) = —KTIn[2 costiH/KT)]. This example concerns the contact Hamiltonian that gen-

erates the flow transforming the Legendre submanifold of
noninteracting spins into the set of equilibrium states of the
Curie-Weiss model. Let us assume that spins are located on a
lattice and each spin interacts with the mean field generated
by other spins. We describe the system by the spin Hamil-
tonian[22]

Due to Eq.(4.21) the contact Hamiltonian turns out to be

1
f(H,T)=—3-KTIn| 5+ 5

\/cosﬁ(H/kT) 2e 2T smh(za/kT)) ] N
COS“H/kT) H(S):_N 2 SiSj_HE Si,
i<j i=1

(4.22

The integral curve of the vector field.19 passing through
a point (Ug,Sg,Tg,Hg,mp) has the form

wheres=(s;,...,Sy) denotes the spin configuration Mfpar-
ticles. It can be showfi22] that the Gibbs function per spin
f(B,H) [B=(kT) 1] in the thermodynamic limit takes the

B . of . of form
u()=ug+| f-H-m=T—=]t, )
f(,B,H)z—'E[In 2—1BIn3+Incosh BIne+ BH)],
of
—e 2 (4.25
s(t)=sg (ﬂ_t,
where 7, is the greatest solution of the equation
T(t)=To,
H(t):Ho, L.
In the case oH =0 it is well known that Eq(4.26 has only
of one solutionyy,=0 for B<B.=1/J, i.e., above the critical
m(t)=my— mt' (4.23  temperature, and three solutions f8c>8., but only the

greatest one that is nonzero maximizes the Gibbs function
25. Such a phenomenon is called a phase transition. In
case of nonzero intensity of the magnetic field there can
1-3 solutions, but there always exists a positive solution
which, as is suggested by numerical simulations, maximizes
the Gibbs function. There is no phase transition in the

Because of the complicated form of the partial dlfferentlalsthe
of f, we explicitly give only the relation for magnetization at be
t=1. Taking into account that for noninteracting spimg
=tanh{/kT), we get

_ system.
m(H.T)= sinh(H/kT) These considerations allow us to deduce that there is a
' JeosR(H/KT)—2e~ 2T sinn(2J/KT) single functionf(gB,H) that generates the submanifold of

(4.24) equilibrium states as long as the magnetic intensity is non-
zero, and there are two such functions whes 0. Keeping
Using Eq.(4.22 we can easily obtain the magnetic sus-that in mind, we can give the contact Hamiltonian,
ceptibility per spin,
f(T,H,70(T,H))=3J73T,H)—kTIn

om(H,T)
X(HT)=—7—, cosfiJ/kT7o(T,H)+H/KT]
cosiH/KT) '
transforming it from the noninteracting system. Indeed, ac- (4.27
cording toT = const,H = const, and taking the differential of
tin the last equation, we get where we take into account that the Gibbs function for non-
) , interacting spins has the formfo(T,H)=—kT[In2
C(H.T) = Jm(H,T) +In cosh@/kT)]. The analytical form ofo= 7,(T,H) is, of
AL dH oHZ course, unknown, but in spite of that we can calculate the

magnetization. According to E¢4.23 we should calculate
Keeping in mind the initial conditiony(0)= xqo(H,T) afl9H but nowf=f(T,H, 5¢(T,H)) is a composite function
=[cosH(H/kT)] %, one can obtain of T and we are obliged to modify E@4.23,
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df af  of 4
m(t)=mgy— 7’0) .

—t=my— | —+— ——|t
dH 0 (aH ano H
Since

of  of ofg  of

ang dne Imo Ao
we finally get
B of
m—mo m
= Hy— - 1J 2 1| J H
=tanf(gH) - —=| 5 -3 ncosh{ I+ BH)
1
+ElncosH,BH))

=tanh BH) +tanh BJ 7o+ BH) —tanh BH)
=tanh(BIno+ BH) = 70.
Example 6: Scaling

Let us choose the intensive parametepsT(wy, ... uy)
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r

IPu) P, 9P
U<1>=¢(1>—DW—T?—mE:1 ﬂmmsz(O)-
We can interpret
f(p,Topa, oo t) =(X=1)P0)(P, Ty g, ptr)
(4.30

as the function generating the process that does not change
any physical properties of the initial system. The final system
can be treated as a rescaled initial one by multiplying the
control parameters by.

V. CONCLUDING REMARKS

Let us note finally that another choice of independent
variables might beT,V,«) and we would have in that case
a direct connection with the partition functia(T,V,u) of
the grand canonical ensemble. It turns out that the form

O(T,V,u)=—KTINZ(T,V,x)

of the generating function leads to correct equations for the
equilibrium manifold of the system in the grand canonical

in the r-component system as independent variables. Theghsemble. The contact Hamiltoniai depends now on

from Theorem 1 we get
F(P, Tt oottr) = @1y (P T g ota) = Do)
X(paTalu’li"' (428)

Let additionally® ;)= xP o, Wherey is some non-negative

M)

constant. This corresponds to the rescaling of the submani-

fold and leads to the homogeneous decreaseX) or in-

crease §>1) of extensive parameter¥(S,N4,...,N,) and
internal energyJ:
V= (?jgl) = (9(;;0) =xVo)
Sw=-— (9?1(-1) = a((l;-éo) =xS(0)
Nf «9;:: B aai(,:) =xNY, m=1,... ,(réf'zg

(T,V,u) and is associated witA(T,V,u) in the same way
as in Eq.(4.4), i.e.,

Zl(T,V,,lL)

f(T,V, ) KTIn 7o)
The above considerations dealt with the inverse problem,
i.e., we were looking for the generating function assuming
that we knew the initial and final systems. But the results can
also be used when we knover predict the form of the
generating function and want to investigate how the flow
generated byX; deforms the initial manifold, i.e., how it
modifies thermodynamic functions such as energy, entropy,
or pressure. This will be the subject of further investigations.
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