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Canonical deformations of surfaces of equilibrium states in thermodynamic phase space

Jacek Jurkowski*
Institute of Physics, Nicholas Copernicus University, Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 9 December 1999!

Deformations of submanifolds of thermodynamic equilibrium states introduced by continuous contact maps
on a phase-space manifold are considered in terms of the geometrical formulation of thermodynamics. The
notion of a contact Hamiltonian is recalled in order to give some possible physical interpretations of such a
function in terms of statistical quantities describing initial and deformed systems. Using contact flows we
propose a very efficient method for constructing continuous families of thermodynamic systems. A few ex-
amples show the possible advantages of using contact Hamiltonians.

PACS number~s!: 05.70.2a, 05.90.1m, 95.30.Tg
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I. INTRODUCTION

For the last 25 years there has been growing interest in
application of methods of differential geometry in statistic
physics and thermodynamics. The geometrical treatmen
represented by two main lines of investigation: one acco
ing to the metric and the other according to the contact st
ture of thermodynamic phase space. The metric structure
phenomenologically introduced by Weinhold@1# whereas
Ruppeiner@2# derived the form of the metric tensor from
fluctuation theory working in an entropy representation
the fundamental relation. Using the metric tensor many
thors have been able to calculate the scalar curvature
some statistical and thermodynamic models, and to inve
gate two hypotheses that immediately appeared concer
the connection between metric and physical quantities@3–6#.
Ruppeiner put forward the idea that curvature is proportio
to the inverse of the free energy of the system whereas
yszek@5# proposed that the scalar curvature is divergent n
critical points and, due to its connection with the second a
third moments of fluctuation, can measure the stability of
system. Both hypotheses have been studied for a wide c
of systems@3,4# including the van der Waals model@5,6#,
quantum gases@7#, and model magnetic systems@8#.

In 1973 Herman@9# suggested that the most suitab
structure for classical thermodynamics is that of an o
dimensional space endowed with the contact struc
@10,11#. In @12# it was shown that both metric and conta
structures have their origin in a statistical quantity called
microscopic entropyS52 ln r, wherer is a representative
distribution in mechanical phase space for a macrostate
erated by fixed mean values of an ensemble ofn observables,
Fi . The contact structure is related then to the mean valu
a differential ^ds& and the metric structure to the varian
Š(ds2^ds&)2

‹, where ^¯& denotes the statistical averag
Both structures are independent but essential in the form
tion of the laws of thermodynamics. Introducing a therm
dynamic phase space naturally endowed with the con
structure, one obtains a reinterpretation of the set of equ
rium states in terms of an integral submanifold of a Pf
equation for a contact form, a description for quasistatic th
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modynamic processes in the language of contact transfor
tions and vector fields@10#, and the possibility of deforma
tions of an equilibrium submanifold using contact too
@10,13#. Let us also mention that there exist many similariti
in the structure of contact and symplectic~or Poisson! mani-
folds which allow one to describe dynamical systems a
thermodynamics in the common language of differen
geometry.

In this paper, we investigate only one of the many su
jects mentioned above, concerning deformations of the se
equilibrium states~the equilibrium submanifold!. In some
sense the deformations are canonical, i.e., they naturally
pear when the contact structure and contact transformat
are assumed to act on thermodynamic phase space. In
words, we deal with deformations introduced by the cont
flow. We show that, if there are two surfaces of equilibriu
states for two different systems located in the same ther
dynamic phase space, there exists a contact transforma
that deforms one into the other. As an initial system~in the
sense of evolution in thermodynamic phase space!, we will
choose statistical models of noninteracting particles or sp
and we will deform them into systems with inner interactio
~Sec. IV!. But due to Theorem 1 below the initial and fin
systems can be chosen freely.

To prepare for the introduction of Theorem 1 in Sec. I
which turns out to be useful in the construction of deform
tions using contact flow, let us recall some basics of con
geometry. A more comprehensive discussion of contact
ometry can be found in@14,15,12#.

The contact structure is introduced on the od
dimensional thermodynamic phase spaceP by a differential
one-formQ, called the contact form, satisfying the nond
generacy condition

Q∧~dQ!nÞ0. ~1.1!

According to the Darboux theorem there exists a coordin
system (x0,x1, . . . ,xn,p1 , . . . ,pn) ~contact coordinates! in
which the contact one-formQ has the following form:

Q5dx01pidxi . ~1.2!

On such a contact manifold one can introduce the con
transformationw:P→P as a map preserving the contact on
form up to multiplication by a function
1790 ©2000 The American Physical Society
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w* Q5lQ, ~1.3!

where the asterisk denotes pull-back@16# of the form andl
is a nowhere-vanishing function onP. It is natural to inves-
tigate the case of one-parameter groups of contact tran
mations that are generated by vector fields. More precis
let w t :P→P be such a map (w t* Q5l tQ); by the generator
of this one-parameter group of contact transformations
mean a vector fieldX given by

X~p!5
d

dtU
t50

w t~p! for w0~p!5p, ~1.4!

i.e., the vector field tangent to the trajectoryw t(p) at any
point pPP. It is easy to verify that ifw t* Q5l tQ then

LXQ5
d

dt
l tQ5l̇ tQ, ~1.5!

where LX is the Lie derivative. We call the vector field
satisfying Eq.~1.5! contact vector fields.

We once again return to the fact that the odd-dimensio
thermodynamic phase space endowed with the contact s
ture has many features similar to those of an ev
dimensional mechanical phase space. Among them, the
istence of vector fields that correspond to smooth, sc
functions is most useful for our purpose. Let us define
Reeb vector fieldj by

i jdQ50,
~1.6!

i jQ51.

Then it is easy to check that a vector fieldXf given by

i Xf
dQ52d f1j~ f !Q,

~1.7!
i Xf

Q5 f ,

where i Xf
is the contraction of a differential form with th

vector fieldXf , fulfills the relation

LXf
Q5j~ f !Q. ~1.8!

Due to Eq.~1.5! this means that this field generates the co
tact transformation. As in mechanics,f is called the contac
Hamiltonian, although it has nothing to do with the notion
energy. f plays only the role of a generating function fo
the contact vector fieldXf .

Because contact deformations are due to contact flows
emphasize the role of contact Hamiltonians, which will ge
erate further objects~Sec. III!. For example, from Eqs.~1.7!
and ~1.2! we deduce that the contact fieldXf generated by
the contact Hamiltonianf has the following form in contac
coordinates:

Xf5S f 2pi

] f

]pi
D ]

]x0 1S pi

] f

]x02
] f

]xi D ]

]pi
1

] f

]pi

]

]xi .

~1.9!
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Note that if x0 were absent then the relation~1.9! would
reduce to the well-known formula for the Hamiltonian vect
field in mechanics.

The scope of this paper is also to give a physical interp
tation to contact Hamiltonians that provide deformations
well as to show possible applications and advantages
occur while dealing with such contact transformations. W
this aim, in Sec. III we formulate Theorem 1, which is
powerful tool for the discussion of the thermodynamic mea
ing of the contact Hamiltonian. It turns out that in som
cases such a contact Hamiltonian remains in close con
tion with statistical quantities describing both systems. T
enables us to give an explicit formula for the contact Ham
tonian when the initial and final systems are given and
produce some thermodynamic systems. When the syst
are described in terms of the canonical ensemble, it is p
sible to give the relation between the contact Hamilton
and statistical Hamiltonians of both the initial and the fin
systems. In this case, the contact Hamiltonian ‘‘measur
how much the statistical Hamiltonians differ as a con
quence of, for example, the difference between potential
particle interactions in both systems.

II. SUBMANIFOLDS OF EQUILIBRIUM STATES

The equilibrium states of a thermodynamic system,
scribed in an appropriately chosen phase spaceP, are located
on some subspaces ofP. The subspaces, which are calle
Legendre submanifolds, have dimension equal ton @16,14#.
In @14# a theorem is proved that gives the local description
such submanifolds. We recall that for any disjoint partiti
I øJ of the set of indices$1, . . . ,n% and for a function
F(xJ,pI) of n variablesxj , j PJ, pi , i PI , the n11 equa-
tions

pJ52
]F

]xJ , xI5
]F

]pI
, x05F2pI

]F

]pI
~2.1!

define a Legendre submanifoldL of P. Conversely, every
Legendre submanifold ofP is defined in the neighborhood o
every point by such equations for at least one of then

possible choices of the subsetI. We callF the function gen-
erating the Legendre submanifoldL.

Suppose that we are given a submanifold of equilibriu
statesL and a functionf generating contact vector fieldXf
whose integral curve through a pointpPL is w t(p). There
are two possibilities: either the curvew t(p) stays onL for all
t, i.e., the vector fieldXf is tangent to the submanifold o
equilibrium statesL, or the curve leaves the subspaceL. In
the first case, the trajectory goes through equilibrium sta
of the system and it can sometimes be interpreted as a
sistatic process which changes the equilibrium states@17,10#.
It can be proved thatXf is tangent toL if and only if f
vanishes onL, i.e., L, f 21(0) @10#. In the second case,Xf
introduces a dynamic flow that deforms the submanifold
equilibrium states continuously and takes it into another s
submanifold. This case is of great interest for our paper.

One can also state the inverse problem@18#, which in this
context means that we look for a functionf when two sub-
manifolds of equilibrium states, the initialL0 and the final
L1 , are given, so that the flow generated byXf transforms
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1792 PRE 62JACEK JURKOWSKI
L0 into L1 . The inverse problem in thermodynamics in
simpler case was investigated in@17#. Now we want to give
an explicit expression for the contact Hamiltonianf in terms
of F (0) andF (1)—the functions that generate the subma
folds L0 andL1 , respectively.

III. THE CONTACT HAMILTONIAN

In this section, we formulate a theorem that connects
contact Hamiltonian deforming the initial submanifoldL0
into the finalL1 with functionsF (0) andF (1) generatingL0
and L1 , respectively. We use the notation of Theorem
below, i.e.,xJ and pI are the independent variables. We r
call thatI andJ are disjoint subsets ofI øJ5$1, . . . ,n% and
xJ, pI denote the sets$xj , j PJ% and$pi , i PI %, respectively.
The remaining variablesxI , pJ , andx0 are functions of the
independent ones. The whole set of 2n11 variables
(x0,xJ,xI ,pI ,pJ) builds up the thermodynamic phas
spaceP.

Following @19#, we formulate our main theorem.
Theorem 1. Let L0 andL1 be two Legendre submanifold

given by the generating functionsF (0)(x
J,pI) and F (1)

3(xJ,pI), respectively. Then

f ~xJ,pI !5F~1!~xJ,pI !2F~0!~xJ,pI ! ~3.1!

is the contact Hamiltonian generating the vector field,
integral curves of which transform the submanifoldL0 for
t50 into L1 for t51. tP@0,1# is the parameter of the in
tegral curve.

The proof goes as follows. From Eq.~1.9!, remembering
that f depends only on (xJ,pI), we get the following evolu-
tion equations for the whole set of variables:

ẋ05 f 2pI

] f

]pI
,

ṗJ52
] f

]xJ
, ṗI50, ~3.2!

ẋI5
] f

]pI
, ẋJ50.

We see immediately thatpI andxJ do not evolve and remain
constant. On the other hand, due to Eq.~2.1!, we can write
out parametric equations for the submanifolds in the c
when the generating functionsF (0) and F (1) depend on
(xJ,pI):

pJ
~k!52

]F~k!

]xJ , x~k!
I 5

]F (k)

]pI
,

~3.3!

x~k!
0 5F~k!2pI

]F~k!

]pI
, k50,1,

where the subscriptk refers to the systemL0 or L1 . Let us
turn back to Eq.~3.2!. The calculation ofẋ0 by use of Eqs.
~3.3! and ~3.1! gives
-

e

-

e

e

ẋ05 f 2pI

] f

]pI
5F~1!2F~0!2pI S ]F~1!

]pI
2

]F~0!

]pI
D

5F~1!2F~0!1x~1!
0 2F~1!1F~0!2x~0!

0 5x~1!
0 2x~0!

0 .

~3.4!

Both x(1)
0 andx(0)

0 depend only on (xJ,pI), which stay con-
stant during the evolution, and that is why we can integr
Eq. ~3.4!. The resulting evolution forx0, taking into account
the initial conditionx0(0)5x(0)

0 , is

x0~ t !5~x~1!
0 2x~0!

0 !t1x~0!
0 . ~3.5!

In an analogous way we get

pJ~ t !5~pJ
~1!2pJ

~0!!t1pJ
~0! , ~3.6!

xI~ t !5~x~1!
I 2x~0!

I !t1x~0!
I . ~3.7!

The above equations complete the proof because it is o
ous that x0(1)5x(1)

0 , pJ(1)5pJ
(1) , xI(1)5x(1)

I , and the
evolution generated byXf with f of the form~3.1! transforms
the submanifold of equilibrium states of the initial syste
into that of the final system.

Once the Hamiltonian~3.1! is obtained, we can use it to
construct a continuous family of thermodynamic syste
given by generating functions

F (t)~xJ,pI !5x0~ t !1pIx
I~ t !, ~3.8!

where x0(t) and xI(t) are given by Eqs.~3.5! and ~3.7!,
respectively. We would expect that the systems would p
sess ‘‘intermediate’’ properties in comparison to the init
and final systems, but this will be the subject of further
vestigation. As an illustration of the considerations above
the end of Example 1 in Sec. IV we construct a continuo
family of van der Waals–like systems different from th
obtained in@10#.

IV. CONNECTIONS WITH STATISTICAL
THERMODYNAMICS

In this section, we give a physical interpretation of t
contact Hamiltonian that transforms one submanifold
equilibrium states into another, showing that it can be as
ciated with statistical quantities describing the initial and
nal systems. Let us imagine that there is a continuum
systems at our disposal which we can pass through du
the transformation from the initial~first! system to the final
~deformed! one.

A. Nonideal gas models

Let us first work in a five-dimensional phase spaceP
locally described by thermodynamic variable
(x0,x1,x2,p1 ,p2)5(U,V,S,p,2T), whereU, V, S, p, andT
stand for energy, volume, entropy, pressure, and temp
ture, respectively. In such coordinates one can calculate f
Eq. ~1.9! that the functionf (U,V,S,p,T) generates a vecto
field of the form
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Xf5S f 2p
] f

]p
2T

] f

]TD ]

]U
1

] f

]p

]

]V
2

] f

]T

]

]S

1S p
] f

]U
2

] f

]VD ]

]p
1S T

] f

]U
1

] f

]SD ]

]T
. ~4.1!

In order to give some physical meaning to both functionf
and F let us first choose the function generating the s
manifold of equilibrium states as

F~T,V;N!52kT ln Z~T,V;N!, ~4.2!

wherek is the Boltzmann constant andZ(T,V;N) is the par-
tition function of theN-particle system.~At this point we
considerN as a parameter, not a variable.! ~T, V! are cho-
sen to be independent variables, because in such a cas
can imagine that the partition function originates from t
canonical ensemble for a system described by the dynam
Hamiltonian H(q,p), where (q,p) denote all the 2N dy-
namical phase-space variables,

Z~T,V,N!5
1

h3NN! EVV

expS 2
H~q,p!

kT Ddq dp, ~4.3!

where the integration runs over the dynamical phase sp
VV . F(T,V;N) is then the Helmholtz thermodynamic po
tential.

Using Theorem 1, we can give a statistical interpretat
to the contact Hamiltonian. Indeed, letZ0(T,V;N) and
Z1(T,V;N) be two partition functions of the initial and fina
systems, respectively; then from Eq.~3.1! we get

f ~T,V;N!5F~1!~T,V;N!2F~0!~T,V;N!

52kT ln
Z1~T,V;N!

Z0~T,V;N!
. ~4.4!

The contact Hamiltonian turns out to be in a simple relat
with the ratio of partition functions of the final and initia
systems. When we want to change the initial or the fi
system we must simply reparametrize curves generated
Xf . Let us stress that we want the partition function or th
modynamics potentials to play a crucial role in the theo
and their origin is less important. Let us give a few e
amples.

Example 1: Deformation of an ideal gas into the van der Waal
model

In this example, we calculate the functionf that generates
the deformation of an ideal gas into the van der Waals
and show how the contact field transforms thermodyna
variables and relations. We use the appropriate parti
functions@20#

Z0~T,V;N!5
VN

N! S 2mpkT

h2 D 3N/2

, ~4.5!

Z1~T,V;N!5
~V2Nb!N

N! S 2mpkT

h2 D 3N/2

expS aN2

VkTD ,

~4.6!
-

we

al

ce

n

n

l
by
-
y
-

s
ic
n

where m is the mass of the particle,a, b are the van der
Waals parameters, andh is the Planck constant. Then usin
Eq. ~4.4! we get

f ~T,V;N!52NkT ln
V2Nb

V
2

aN2

V
. ~4.7!

The contact Hamiltonian~4.7! produces the vector field

U̇52
aN2

V
,

V̇50,

Ṡ5Nk ln
V2Nb

V
, ~4.8!

ṗ5
N2kTb

V~V2Nb!
2

N2a

V2 ,

Ṫ50.

The solution of the above set of equations leads, accordin
Theorem 1, to the following thermodynamic relations for t
van der Waals gas:

U15U~1!5U02
aN2

V1
5

3

2
NkT12

aN2

V1
,

V15V~1!5V0 ,

S15S~1!5S01Nk ln
V12Nb

V1

5 3
2 Nk1k lnF ~V12Nb!N

N! S 2mpkT1

h2 D 3N/2G ,
p15p~1!5p01

N2kT1b

V1~V12Nb!
2

N2a

V1
2 5

NkT1

V12Nb
2

N2a

V1
,

T15T~1!5T0 ,

where the initial values (U0 ,V0 ,S0 ,p0 ,2T0) fulfill the rela-
tions

U05 3
2 NkT0 ,

S05 3
2 Nk1k lnFV0

N

N! S 2mpkT0

h2 D 3N/2G , ~4.9!

p0V05NkT0 ,

valid for the ideal gas. Let us stress, in particular, that
equation forp1 reproduces the standard van der Waals eq
tion of state,

S p11
aN2

V1
2 D ~V12Nb!5NkT1 .
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In what follows, we will omit the subscript 1, keeping i
mind that all thermodynamic quantities for the final syste
are evaluated att51.

Using the flow of the contact field~4.8!, we are able to
transform not only thermodynamic variables but also re
tions including them. For example, it is easy to map
specific heat

cV5TS ]S

]TD
V

. ~4.10!

Indeed, Eq.~4.10! differentiated int leads to

ċV5TS ]Ṡ

]T
D

V

5TS ]

]T
Nk ln

V2Nb

V D
V

50, ~4.11!

and we conclude thatcV remains constant during the evolu
tion. The value ofcV is then the same as for the ideal gas a
equals3

2 Nk.
According to Eq.~3.8! we get a continuous family of van

der Waals-like systems described by the partition functio

Z~ t !~T,V;N!

5
VN~12t !~V2Nb!Nt

N! S 2mpkT

h2 D 3N/2

expS atN2

kTVD ,

which lead to the equations of state

U5 3
2 NkT2

taN2

V
,

S p1
N2at

V2 D ~V2Nb!5NkTS 11
Nb

V
~ t21! D .

The first one represents the slightly modified energy of
van der Waals model while the second introduces correct
to the van der WaalspVT equation.

Example 2: Deformation into a nonideal gas

This example concerns the contact flow that introduce
deformation of an equilibrium submanifold of the ideal g
into an appropriate submanifold of the gas ofN interacting
particles.

Let us assume that a mechanical Hamiltonian describ
the system,

HN5(
i 51

N pi
2

2m
1(

i , j
V~ uqi2qj u!, ~4.12!

contains a two-particle potentialV dependent only on dis
tances between particles. It is easy to show by calculating
partition function~4.3! with the Hamiltonian~4.12! that

Z~T,V;N!5Z0~T,V;N!QN~T,V!,

where Z0(T,V;N) is the canonical partition function~4.5!
andQN(T,V) is a configuration integral,
-
e

d

e
ns

a

g

he

QN~T,V!5
1

VN E
VN,R3N

expS 2
1

kT(
i ,k

V~ uqi2qku! D
3dq1¯dqN , ~4.13!

which contains all information about the interaction. Due
Eq. ~4.4! the contact Hamiltonian that transforms the Le
endre submanifold of an ideal gas into the equilibrium su
manifold of a gas with interacting particles takes the form

f ~T,V;N!52kT ln
Z~T,V;N!

Z0~T,V;N!
52kT ln QN~T,V!.

~4.14!

What remains is to determineQN(T,V). To this end, let us
assume that particles behave like hard balls and the inte
tion potential has a cutoff at the distanced. Moreover, we
take into account rare gases so that the probability of a
multaneous collision of three or more particles is negligib
These assumptions imply that the configuration integra
@21#

QN~T,V!5)
r 51

N S 11~r 21!
a~T!

V D , ~4.15!

where

a~T!5E
0

d

4pq2~e2V~q!/kT21!dq. ~4.16!

Because of Eq.~4.14! the contact Hamiltonian turns out to b

f ~T,V;N!52kT(
r 51

N

lnS 11~r 21!
a~T!

V D . ~4.17!

If ( N/V)a(T)!1 for the whole temperature interval is a
sumed, then

f ~T,V;N!52kT
a~T!

V (
r 51

N

~r 21!

52kT
a~T!

V

N21

2
N

>2kT
a~T!

V

N2

2
.

The functionf (T,V;N) generates the following vector fiel
@see Eq.~4.1!#:

U̇5
kT2N2

2V
a8~T!,

V̇50,

Ṡ5
kN2

2V
@a~T!1Ta8~T!#5

kN2

2V

d

dT
@Ta~T!#,

ṗ52
kTN2

2V2 a~T!,
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Ṫ50.

Because of Eq.~4.9! we get the set of thermodynamic rel
tions for the final system,

U5 3
2 NkT1

kT2N2

2V
a8~T!,

S5 3
2 Nk1k lnFVN

N! S 2mpkT

h2 D 3N/2G1
kN2

2V

d

dT
@Ta~T!#,

p5
NKT

V
2

kTN2

2V2 a~T!5
NkT

V S 12
N

2V
a~T! D ,

where we omit the subscript 1. Let us stress that the equa
for p has the well-known form of a virial expansion,

p

kT
5

N

V F12
1

2 S N

VDa~T!G .
Similarly to Eq.~4.11!, we are able to calculate the relatio
for cV for the final system,

ċV5TS ]Ṡ

]T
D

V

5T
kN2

2V

d2

dT2 @Ta~T!#,

which gives, after integration, the formula

cV5 3
2 Nk1

kN2

2V
T

d2

dT2 @Ta~T!#,

where 3
2 Nk originates from the initial condition and corre

sponds to the value ofcV for an ideal gas.
The same considerations as in Example 1 can be app

when we choose as variables the thermodynamic dens
u5U/N, v5V/N, ands5S/N, i.e., we parametrize thermo
dynamic phase space by (u,v,s,p,2T). When we select
(v,T) as independent variables and consider the free en
per particlef(v,T) as a generating function, it is immed
ately clear that such a model is suitable to describe statis
systems in the thermodynamic limitN→` while v5V/N
remains constant. Suppose that the system hasZ(V,T;N) as
a partition function. Then

f~v,T!52kT lim
N→`

1

N
ln Z~V,T;N!. ~4.18!

Theorem 1 implies that the contact Hamiltonian deform
the initial submanifold into the final one has the form

f ~v,T!5F~1!~v,T!2f0~v,T!.

Example 3: van der Waals model in the thermodynamic limit

Using Eqs.~4.5! and ~4.6! for the calculation of the free
energy~4.18! in the thermodynamic limit we obtain the fo
lowing contact Hamiltonian:

f ~v,T!52kT ln
v2b

v
2

a

v
.

on

ed
es

gy

al

As in Eq. ~4.8! we get the contact field and thermodynam
relations for the van der Waals gas,

u̇52
a

v
, u5u02

a

v0
,

v̇50, v5v0 ,

ṡ5k ln
v2b

v
, s5s01k ln

v02b

v0
,

ṗ5
kTb

v~v2b!
2

a

v2 , p5p01S kT0b

v0~v02b!
2

a

v0
2D ,

Ṫ50, T5T0 ,

where (u0 ,v0 ,s0 ,p0 ,T0) represent the initial conditions o
the dynamics. Again we conclude that the thermodynam
relations for the van der Waals gas are reproduced.

B. Spin systems

Any other choice of independent variables inZ consistent
with Theorem 1 can be made; in particular, magnetic s
tems can be taken into account. As an illustration we re
two magnetic systems, the one-dimensional Ising model
the Curie-Weiss model, for which partition functions a
known @22,23#. The appropriate thermodynamic phase spa
is similar to that previously used, where one changes
contact variablep→2H ~magnetic field intensity! and v
→m ~magnetization!, i.e., we assume a contact vector fie
of the form

Xf5S f 2H
] f

]H
2T

] f

]TD ]

]u
2

] f

]H

]

]m
2

] f

]T

]

]s

1S H
] f

]u
2

] f

]mD ]

]H
1S T

] f

]u
1

] f

]sD ]

]T
. ~4.19!

As a generating function we use the Gibbs thermodyna
potential per spin,

f~H,T!52kT lim
N→`

1

N
ln Z~H,T;N!, ~4.20!

which implies according to Theorem 1 that the conta
Hamiltonian is

f ~H,T!5f~1!~H,T!2f~0!~H,T!, ~4.21!

where the contact flow deforms the initial submanifold of t
system of noninteracting spins~but interacting with the ex-
ternal magnetic field! into a system of spins where intera
tions are present.

Example 4: Short interaction model

Let us consider first the case of a one-dimensional cy
spin chain in a magnetic field of intensityH, where each spin
interacts with its nearest neighbors~the Ising model!. We
denote byJ the parameter of interaction and assume
Gibbs potential in the following form@22#:
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f~H,T!52J2kT lnS coshS H

kTD
1Acosh2~H/kT!22e22J/kT sinh~2J/kT! D ,

which simplifies for noninteracting spins to

f~0!~H,T!52kT ln@2 cosh~H/kT!#.

Due to Eq.~4.21! the contact Hamiltonian turns out to be

f ~H,T!52J2kT lnS 1

2
1

1

2

3
Acosh2~H/kT!22e22J/kT sinh~2J/kT!

cosh~H/kT!
D .

~4.22!

The integral curve of the vector field~4.19! passing through
a point (u0 ,s0 ,T0 ,H0 ,m0) has the form

u~ t !5u01S f 2H
] f

]H
2T

] f

]TD t,

s~ t !5s02
] f

]T
t,

T~ t !5T0 ,

H~ t !5H0 ,

m~ t !5m02
] f

]H
t. ~4.23!

Because of the complicated form of the partial differenti
of f, we explicitly give only the relation for magnetization
t51. Taking into account that for noninteracting spinsm0
5tanh(H/kT), we get

m~H,T!5
sinh~H/kT!

Acosh2~H/kT!22e22J/kT sinh~2J/kT!
.

~4.24!

Using Eq.~4.22! we can easily obtain the magnetic su
ceptibility per spin,

x~H,T!5
]m~H,T!

]H
,

transforming it from the noninteracting system. Indeed,
cording toT5const,H5const, and taking the differential o
t in the last equation, we get

ẋ~H,T!5
]ṁ~H,T!

]H
52

]2f

]H2 .

Keeping in mind the initial conditionx(0)5x0(H,T)
5@cosh2(H/kT)#21, one can obtain
s

-

x~H,T!52
cosh~H/kT!@2e22J/kT sinh~2J/kT!21#

kT@cosh2~H/kT!22e22J/kT sinh~2J/kT!#3/2,

which is in agreement with relations one gets using statist
methods.

Example 5: Long interaction model

This example concerns the contact Hamiltonian that g
erates the flow transforming the Legendre submanifold
noninteracting spins into the set of equilibrium states of
Curie-Weiss model. Let us assume that spins are located
lattice and each spin interacts with the mean field genera
by other spins. We describe the system by the spin Ham
tonian @22#

H~s!52
J

N (
1< i , j <N

sisj2H(
i 51

N

si ,

wheres5(s1 ,...,sN) denotes the spin configuration ofN par-
ticles. It can be shown@22# that the Gibbs function per spin
f(b,H) @b5(kT)21# in the thermodynamic limit takes th
form

f~b,H !52
1

b
@ ln 22 1

2 bJh0
21 ln cosh~bJh01bH !#,

~4.25!

whereh0 is the greatest solution of the equation

h05tanh~bJh01bH !. ~4.26!

In the case ofH50 it is well known that Eq.~4.26! has only
one solutionh050 for b,bc51/J, i.e., above the critical
temperature, and three solutions forb.bc , but only the
greatest one that is nonzero maximizes the Gibbs func
~4.25!. Such a phenomenon is called a phase transition
the case of nonzero intensity of the magnetic field there
be 1–3 solutions, but there always exists a positive solu
which, as is suggested by numerical simulations, maximi
the Gibbs function. There is no phase transition in t
system.

These considerations allow us to deduce that there
single function f(b,H) that generates the submanifold
equilibrium states as long as the magnetic intensity is n
zero, and there are two such functions whenH50. Keeping
that in mind, we can give the contact Hamiltonian,

f „T,H,h0~T,H !…5 1
2 Jh0

2~T,H !2kT ln

3
cosh@J/kTh0~T,H !1H/kT#

cosh~H/kT!
,

~4.27!

where we take into account that the Gibbs function for no
interacting spins has the formf(0)(T,H)52kT@ ln 2
1ln cosh(H/kT)#. The analytical form ofh05h0(T,H) is, of
course, unknown, but in spite of that we can calculate
magnetization. According to Eq.~4.23! we should calculate
] f /]H but now f 5 f „T,H,h0(T,H)… is a composite function
of T and we are obliged to modify Eq.~4.23!,
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m~ t !5m02
d f

dH
t5m02S ] f

]H
1

] f

]h0

]h0

]H D t.

Since

] f

]h0
5

]f

]h0
2

]f~0!

]h0
5

]f

]h0
50,

we finally get

m5m02
] f

]H

5tanh~bH !2
]

]H S 1

2
Jh0

22
1

b
ln cosh~bJh01bH !

1
1

b
ln cosh~bH ! D

5tanh~bH !1tanh~bJh01bH !2tanh~bH !

5tanh~bJh01bH !5h0 .

Example 6: Scaling

Let us choose the intensive parameters (p,T,m1 ,...,m r)
in the r-component system as independent variables. T
from Theorem 1 we get

f ~p,T,m1 ,...,m r !5F~1!~p,T,m1 ,...,m r !2F~0!

3~p,T,m1 ,...,m r !. ~4.28!

Let additionallyF (1)5xF (0) , wherex is some non-negative
constant. This corresponds to the rescaling of the subm
fold and leads to the homogeneous decrease (x,1) or in-
crease (x.1) of extensive parameters (V,S,N1 ,...,Nr) and
internal energyU:

V~1!5
]F~1!

]p
5x

]F~0!

]p
5xV~0! ,

S~1!52
]F~1!

]T
52x

]F~0!

]T
5xS~0! ,

~4.29!

Nm
~1!52

]F~1!

]mm
52x

]F~0!

]mm
5xNm

~0! , m51, . . . ,r ,
.

n

ni-

U ~1!5F~1!2p
]F~1!

]p
2T

]F~1!

]T
2 (

m51

r

mm

]F~1!

]mm
5xU ~0! .

We can interpret

f ~p,T,m1 ,...,m r !5~x21!F~0!~p,T,m1 ,...,m r !
~4.30!

as the function generating the process that does not ch
any physical properties of the initial system. The final syst
can be treated as a rescaled initial one by multiplying
control parameters byx.

V. CONCLUDING REMARKS

Let us note finally that another choice of independe
variables might be (T,V,m) and we would have in that cas
a direct connection with the partition functionZ(T,V,m) of
the grand canonical ensemble. It turns out that the form

F~T,V,m!52kT ln Z~T,V,m!

of the generating function leads to correct equations for
equilibrium manifold of the system in the grand canonic
ensemble. The contact Hamiltonianf depends now on
(T,V,m) and is associated withZ(T,V,m) in the same way
as in Eq.~4.4!, i.e.,

f ~T,V,m!52kT ln
Z1~T,V,m!

Z0~T,V,m!
.

The above considerations dealt with the inverse proble
i.e., we were looking for the generating function assum
that we knew the initial and final systems. But the results c
also be used when we know~or predict the form of! the
generating function and want to investigate how the fl
generated byXf deforms the initial manifold, i.e., how i
modifies thermodynamic functions such as energy, entro
or pressure. This will be the subject of further investigatio
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